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Abstract
The Sommerfeld integral enabled one to solve various diffraction problems in
angle-shaped domains. The basic goal of the present paper is to demonstrate
a generalized form of the famous Sommerfeld integral. The kernel of the
traditional Sommerfeld integral is replaced by the solution of a scattering
problem. The latter hint leads to the possibility of representing solutions for
a more general class of diffraction problems in an angle-shaped domain with
the radial perturbation of the boundary or (and) with the presence of a radially
symmetric refraction index in the stationary wave (Helmholtz) equation. The
approach is demonstrated in the simplest situation of diffraction in an angle-
shaped domain with the centrally circular (with respect to the angle vertex)
perturbation of the perfectly conducting boundary.

PACS numbers: 02.60.Nm, 42.25.Fx

In the papers (Tai 1994, Luk’yanov and Nikitin 2000, Lavrov and Luk’yanov 2002) the
authors demonstrated that the explicit solution of the diffraction problems can be obtained in
some angular domains with the boundary supplemented by the circular part. We introduce
a generalized form of the well-known Sommerfeld integral and exploit it for construction of
the solution to a diffraction problem similar to those mentioned above. The corresponding
problems can be considered as important new canonical problems solved by means of
the generalized Sommerfeld integral. These problems may also be used in frames of the
geometrical optics conceptions for different research and engineering applications.

1. The formulation

Consider the domain � = {(r, ϕ) : r > a, |ϕ| < �}, figure 1(A). The plane wave

ui(kr, ϕ) = exp(−ikr cos(ϕ − ϕ0)) (1)
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Figure 1. Diffraction by an angle with a radial perturbation (A); diffraction by a non-perturbed
angle (B).

is incident on the boundary ∂� = σ ∪ a+ ∪ a− consisting of the circumference arc σ

(r = a, |ϕ| < �) of the radius a with the centre at the vertex O of the angle, a± are
the parts of angle sides for r > a, ϕ = ±�, 2�(> π) is the opening of the angle, (r, ϕ)

are the polar coordinates, k > 0 is the wave number. The parameter ϕ0 is the (incidence)
angle between the OX-axis and the direction from which the plane incident wave comes,
−ikr cos(ϕ − ϕ0) = −ik(x cos ϕ0 + y sin ϕ0), x = r cos ϕ, y = r sin ϕ.

The total wave field

u(r, ϕ) = ui(r, ϕ) + us(r, ϕ) (2)

is the sum of the incident and scattered waves, and satisfies the wave equation

�u + k2V (r)u = 0, (3)

where V (r) = N2(r) and N is the refraction index in �. We assume

V ≡ 1

for the problem in hand (though some generalizations are possible for V depending on r.)
The Dirichlet condition

u|∂� = 0 (4)

is valid on the boundary and the traditional Meixner’s conditions are implied at the two angular
points of the boundary.

In order to formulate the conditions at infinity we introduce the diffracted field

ud := u − ugo,

where ugo is the so-called geometrical optics part of the total field: the sum of incident and
possibly reflected from a± waves in the corresponding subdomains of �, r → ∞, (see Babich
et al (2006)). The integral form of the Sommerfeld radiation condition is valid at infinity

∫ �

−�

|∂ru
d − ikud|2R dϕ → 0, R → ∞. (5)
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Figure 2. The Sommerfeld double-loop contour and the contours C±.

The classical solution of the problem in hand is unique provided it exists. The
corresponding proof is similar to that in Babich et al (2006, chapter 1) for the ideal wedge.

2. The generalized Sommerfeld integral and the classical solution of the problem

We look for the solution in the form of the generalized Sommerfeld integral

u(r, ϕ) = 1

2π i

∫
γ+

U(r, α, k)	(α, ϕ) dα, (6)

where γ+ is the upper loop of the well-known double-loop Sommerfeld contour γ , figure 2
(see also Lyalinov and Zhu (2003, figure 2)).

Contrary to the classical form of the Sommerfeld integral, for which the kernel U(r, α, k)

coincides with exp{−ikr cos α}, the function U(r, α, k) should be chosen appropriately in
order to ensure that the integral (6) solves the diffraction problem.

First, we prove a simple statement (which is an extension of the well-known fact for
U(r, α, k) = exp(−ikr cos α), V = 1; see, e.g., Babich et al (2006, chapter 2), Budaev
(1995)).

Lemma 1. Let U(r, α, k) and 	(α, ϕ) be the classical solutions of the equations

(
r−1∂r(r∂r) + r−2∂2

α + k2V (r)
)
U(r, α, k) = 0, (7)(

∂2
ϕ − ∂2

α

)
	(α, ϕ) = 0 (8)

correspondingly, and

∂αU(r, α, k)	(α, ϕ)|∂γ+ = 0, (9)

U(r, α, k)∂α	(α, ϕ)|∂γ+ = 0, (10)

i.e., vanish at the ends of the contour γ+. Then the integral (6) is a classical solution of the
Helmholtz equation (3).



L710 Letter to the Editor

Indeed, we substitute the representation (6) into equation (3), then after simple
rearrangements and integration by parts we obtain

1

2π i

∫
γ+

(
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂ϕ2
+ k2V (r)

)
U(r, α, k)	(α, ϕ) dα

= 1

2π i

∫
γ+

[{(
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂α2
+ k2V (r)

)
U(r, α, k)

}
	(α, ϕ)

+ U(r, α, k)
1

r2

∂2

∂ϕ2
	(α, ϕ) − 	(α, ϕ)

1

r2

∂2

∂α2
U(r, α, k)

]
dα

= 1

2π i

∫
γ+

[(
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂α2
+ k2V (r)

)
U(r, α, k)

]
	(α, ϕ) dα

+
1

2π i

∫
γ+

U(r, α, k)
1

r2

(
∂2

∂ϕ2
− ∂2

∂α2

)
	(α, ϕ) dα = 0. (11)

Remark. It is assumed that the integral (6) rapidly converges so that its substitution into the
Helmholtz equation is justified (see below).

On the second step, we choose the function 	(α, ϕ) in the form

	(α, ϕ) = s(α + ϕ) − s(−α + ϕ) (12)

which obviously satisfies equation (8). Moreover, such a choice is in agreement with the
radiation condition at infinity (see Babich et al (2006, chapter 2), Budaev (1995)).

Now we consider the boundary conditions on the parts a± of the boundary ∂�. They can
be ensured by the appropriate choice of the function s. Recalling the problem for the ideal
wedge, we take

s(α) = µ cos µϕ0

sin µα − sin µϕ0
, µ = π/2� (13)

and verify that the integral (6) fulfils the boundary condition (4) on a± in view of the equalities

s(α ± �) − s(−α ± �) = 0.

Up to now we discussed the choice of the function 	. The kernel U of the generalized
Sommerfeld integral must fulfil equation (7), and, on the other hand, the boundary condition
on the arc σ . It is remarkable that the appropriate choice of the kernel for the problem in hand
is as follows (Hönl et al 1961),

U(r, α, k) = U i(r, α, k) + U s(r, α, k), (14)

where

U i(r, α, k) = exp(−ikr cos α) =
∞∑

m=−∞
Jm(kr) eim(α−π/2), (15)

U s(r, α, k) = −
∞∑

m=−∞

Jm(ka)

H
(1)
m (ka)

H (1)
m (kr) eim(α−π/2). (16)

We observe that formulae (14)–(16) represent the solution of the diffraction problem
provided the plane incident wave U i(r, α, k) is incident1 on a circle of radius a with the

1 The direction of incidence is specified by α0 = 0, provided the incident plane wave has the form (15)

U i(r, α, k) = exp(−ikr cos(α − α0))|α0=0.
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Dirichlet boundary condition. The solution U s(r, α, k) also satisfies the radiation condition.
The solution is obtained for r � a and −π < α � π . In order to have the possibility of
substituting expressions (14)–(16) into the integral (6) we should continue the solution on the
complex plane α. Indeed, the continuation is given by expressions (14)–(16), where α ∈ C. It
is a 2π -periodic even function. Moreover, in view of the estimate (m → ∞)∣∣∣∣ Jm(ka)

H
(1)
m (ka)

H (1)
m (kr)

∣∣∣∣ � const m−1/2 exp{m log(ka/2) − m[log(m) − 1] − m log(r/a)}
for any fixed r � a, it is an entire function of the variable α.

It is obvious from the construction of the kernel in the generalized Sommerfeld integral
that expression (6) satisfies, in view of the lemma, the Helmholtz equation and the boundary
conditions, provided the integral rapidly converges and can be substituted into the equation
and the boundary conditions. So it remains to verify that the sought-for solution is represented
by the convergent integral and fulfils the radiation conditions, which shall be discussed in the
next sections2.

It is worth making some comments on the solution obtained. Obviously, the solution
in hand is more complex than that for the famous Sommerfeld problem in a non-perturbed
angle, figure 1(B). It also depends on the additional parameter a which is the radius of the
circular part of the boundary. In particular, this means greater diversity of the wave processes.
Let us assume that the parameter ka is large, i.e., consider short-wavelength approximation.
In addition to the waves reflected from the angle’s sides and from the circular part, one can
expect the creeping waves propagating along the circular part of the boundary which attenuate
irradiating the energy into the shadow, figure 1(A). This can be demonstrated by means of the
appropriate asymptotic analysis not discussed in the present letter.

On the other hand, provided a → 0, the solution in hand reduces to the Sommerfeld
solution for the non-perturbed angle. If the parameter ka is of O(1), qualitatively the far field
(kr is large) is similar to that in the Sommerfeld problem, figure 2(B), which is not surprising,
because for a remote observer the scatterers in figures 1(A) and (B) are indistinguishable. The
scattering amplitude of the cylindrical wave from the origin, however, is different as follows
from the analysis below and preserves the information on the circular part of the boundary.

3. Convergence of the generalized Sommerfeld integral

In order to study the convergence of integral (6) we should investigate the behaviour of the
kernel, or more precisely, of the function

U s(r, α, k) = i

2

∫
L+∪L−

eiν(π−α)

sin πν
A(ν) dν,

A(ν) = −e−iπν/2 Jν(ka)

H
(1)
ν (ka)

H (1)
ν (kr),

(17)

α = α1 + iα2, α2 → ∞, α1 ∈ (0, π), where Watson’s transformation of the sum (16) has been
exploited, the contour is L+ = (−∞ + iβ,∞ + iβ) with some small positive β and L− is the
symmetric with respect to the origin contour.

We introduce the large parameter p = eα2 . Exploiting the change of the variable ν = pτ

in (17) and using the asymptotics of the cylindrical functions, we asymptotically approximate
Watson’s integral in (17) by the expression

U s(r, α, k) = − ip

2

∫
L+∪L−

epψ(τ,t)

√
2πpτ

(1 + Oτ(1/p)) dτ, (18)

2 The Meixner conditions at the corner points can also be followed.
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where

pψ(τ, t) := p[τ t − p−1 log(sin πpτ) − iπτ/2 − τ(log(pτ) − 1) + τ log((ka)2/2kr)]

and t = α2 + i(π − α1). The integral in (18) is written in such a form that the saddle point
technique can be directly applied.

The saddle point τ0 solves the equation

pψ ′(τ0, t) := p

[
t − π

cos πpτ0

sin πpτ0
− iπ/2 − log(pτ0) + log((ka)2/2kr)

]
= 0,

then

log(pτ0) = t + iπ/2 + log((ka)2/2kr) + O(e2π ipτ0),

provided Im τ0 > 0 as α1 ∈ (π/2, π), which is assumed. We also obtain

τ0 = −((ka)2/2kr)[sin α1 + i cos α1](1 + o(1)),

pψ ′′(τ0, t) = −p/τ0 + O(p2 e−2πp|τ0|),
pψ(τ0, t) = pτ0 + log 2 + iπ/2 + O(p e−2πp|τ0|).

The contour of integration is then deformed in such a manner that its part locally coincides
with a segment of the steepest descent path going through τ0 and the leading asymptotic term
is then computed3 so that the generalized kernel in the Sommerfeld integral (6) satisfies the
estimate

|U s(r, α, k)| � const|exp{−eα2 [sin α1 + i cos α1](ka)2/(2kr)}| (19)

uniformly with respect to r belonging to any compact domain in [a,∞), α = α1 + iα2,

α2 → ∞, α1 ∈ (0, π). Exploiting the periodicity and evenness of U s(r, α, k) and the known
properties of U i(r, α, k), we assert that the integral rapidly converges on the contour γ .

4. The behaviour at infinity

In order to study the behaviour at infinity we represent the solution in the form

u(r, ϕ) = 1

2π i

∫
γ

U(r, α, k)s(α + ϕ) dα = 1

2π i

∫
γ

e−ikr cos αs(α + ϕ) dα + upert(r, ϕ),

upert(r, ϕ) := 1

2π i

∫
γ

U s(r, α, k)s(α + ϕ) dα.

(20)

The first summand in (20) is the classical solution for the angle with the Dirichlet boundary
conditions, whereas the second term can be considered as the perturbation of the classical
Sommerfeld solution due to the circular part σ of the boundary. The classical Sommerfeld
integral in (20) obviously satisfies the radiation conditions (5) which is a sum of the incident
and non-perturbed reflected from the angle sides waves as well as the non-perturbed cylindrical
wave (r → ∞) specified by the saddle points ±π of the integral; see, e.g., Babich et al (2006),
Buldyrev and Lyalinov (2001).

We turn to the second summand upert(r, ϕ) in (20). Deform the double-loop contour γ

into C = C+ ∪ C− shown in figure 2. In the process of such deformation the poles of the
integrand (more precisely, of s(α + ϕ)) are captured. These poles are

α0 = ϕ0 − ϕ, α±1 = ±2� − (ϕ + ϕ0). (21)

3 It can be shown that the leading term of the asymptotics in the second term of (14) is

U s(r, α, k) ∼ − exp{−i(ka)2/(2kr) e−iα}
as α2 → ∞, α1 ∈ (0, π), α = α1 + iα2.
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They correspond to the incident and reflected by the angle waves. Addressing to the second
summand in (20), we have

upert(r, ϕ) =
∑

n=−1,0,+1

HnU
s(r, αn, k) + u

pert
0 (r, ϕ),

u
pert
0 (r, ϕ) = 1

2π i

∫
C

U s(r, α, k)s(α + ϕ) dα,

(22)

where Hn is zero provided the corresponding pole was not captured, otherwise Hn = 1. The
sum in (22) can be interpreted as the waves related to the scattering of the incident and reflected
on a± plane waves by the circular part σ of the boundary. These terms satisfy the radiation
condition at infinity.

Now we reduce the integral u
pert
0 (r, ϕ) in (22) to

u
pert
0 (r, ϕ) = 1

2π i

∫
C

U s(r, α, k)s(α + ϕ) dα

= 1

2π i

∫
C+

U s(r, α, k)[s(α + ϕ) − s(−α + ϕ)] dα.

We can change the Hankel function in the kernel U s (see (16)) by its asymptotics

H(1)
m (kr) =

√
2

πkr
ei(kr−π/4−πm/2))(1 + Om(1/kr))

and obtain in the leading approximation (r → ∞)

u
pert
0 (r, ϕ) =

√
2

πkr
ei(kr−π/4))�(ϕ, ϕ0, ka)(1 + O(1/kr)),

�(ϕ, ϕ0, ka) = 1

2π i

∫
C+

As(α, ka)[s(α + ϕ) − s(−α + ϕ)] dα

(23)

with

As(α, ka) = −
∞∑

m=−∞

Jm(ka)

H
(1)
m (ka)

eim(α−π). (24)

The integral in (23) converges on C+, which is proven by the reduction of (24) to the Watson-
type integral and further asymptotic evaluation analogous to that in the previous section.

The scattering amplitude �(ϕ, ϕ0, ka) describes the influence of the perturbation caused
by the circular arc σ to the far field. This arc plays the role of a virtual source at the angle
vertex producing the far field with the scattering amplitude �(ϕ, ϕ0, ka).

5. Conclusion

Considering a simple example of the diffraction problem, we demonstrated that the generalized
form of the Sommerfeld integral can be applied to a broader class of diffraction problems than
it was implied before. We also emphasize that the generalized form of the integral could
be exploited for the other problems like diffraction by an angle with the circular material
coating centred at the vertex or by a dielectric sphere with the centre at the vertex of the
perfectly conducting cone, etc (see also Tai (1994), Luk’yanov and Nikitin (2000), Lavrov and
Luk’yanov (2002)). It seems that extension of the approach to the case of the impedance-type
boundary conditions on the infinite part of the boundary, if exists, is non-trivial.
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